Abstract

Research on the efficiency characteristic of the hydromechanical continuous variable transmission (HMCVT) in tractors is key to obtaining optimal transmission, developing control strategies, and assessing efficiency. To ease and improve the accuracy of obtaining the efficiency completely based on test measurements or theoretical calculation, this study proposes a method for building the HMCVT efficiency model. The method is based on an improved simulated annealing (SA) algorithm according to a small amount of test data. The study uses 8 groups of transmission efficiency values under different operating conditions obtained from bench tests. By theoretical analysis of the HMCVT, this study divides the total transmission efficiency into (i) the transmission efficiency from the output power of the power source to the confluence mechanism, (ii) the transmission efficiency of the confluence mechanism, and (iii) the transmission efficiency of the output part after confluence. The formulas for the three parts of transmission efficiencies are then derived. This study improves the SA algorithm and uses it to identify the three key parameters of hydraulic systems of the transmission efficiency calculation model. Research results indicate that the efficiency model built using the proposed method exhibits high accuracy with an error of about 1.90%. The improved SA algorithm can rapidly complete key parameter identification with an error of about 2.16%; when the displacement ratio is 0, the efficiency values at the same stage are approximately equal under different operating conditions. The HMCVT efficiency model can be built rapidly and effectively with only five groups of efficiency measurement tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.