Abstract

In this paper, with the frequent occurrence of ship–bridge collision accidents as the context and the collision accident of the Lixinsha Bridge in China as the background, the scenario of a ship impacting a pier was simulated using ANSYS-FLUENT software, and the practical application possibility of the high-pressure water jet interference (HPWJI) anti-collision method was thoroughly investigated. Through the simulation analysis, the effectiveness of a high-pressure water jet with a total flow rate of 45 m3/s in altering the navigation direction of large-tonnage (2000 t) ships and avoiding obstacles was verified. Additionally, its impact on the stress of the ship steel plates and navigation status was also explored. It was found that, with reasonable layout and parameter adjustment, the high-pressure water jet technology could effectively intervene in the ship’s navigation trajectory while ensuring the structural safety of the ship, with minimal impact on the ship’s navigation stability and passenger comfort. Furthermore, the injection angle of the high-pressure water jet had a significant impact on the deflection and deceleration of the ship. Specifically, when the water jet impacted the ship along its forward direction, it could effectively increase the ship’s deceleration and deflection time, reducing the speed from 2.55 m/s to 1.7 m/s, a decrease of approximately 33%, significantly enhancing collision prevention effectiveness. This research provides important guidance for the practical application of high-pressure water jet collision prevention technology and is of great significance for improving the safety of waterway transportation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.