Abstract

Combustible gas concentration detection faces challenges of increasing accuracy, and sensitivity, as well as high reliability in harsh using environments. The special design of the optical path structure of the sensitive element provides an opportunity to improve combustible gas concentration detection. In this study, the optical path structure of the sensitive element was newly designed based on the Pyramidal beam splitter matrix. The infrared light source was modulated by multi-frequency point signal superimposed modulation technology. At the same time, concentration detection results and confidence levels were calculated using the 4-channel combustible gas concentration detection algorithm based on spectral refinement. Through experiment, it is found that the sensor enables full-range measurement of CH4, at the lower explosive limit (LEL, CH4 LEL of 5%), the reliability level is 0.01 parts-per-million (PPM), and the sensor sensitivity is up to 0.5PPM. The sensor is still capable of achieving PPM-level detections, under extreme conditions in which the sensor's optical window is covered by 2/3, and humidity is 85% or dust concentration is 100mg/m3. Those improve the sensitivity, robustness, reliability, and accuracy of the sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call