Abstract

Compared with conventional push drilling, helical milling (orbital drilling) shows great advantages in aeronautical hard-machining materials hole making. However, helical milling of titanium alloy and carbon fiber reinforced plastic (CFRP) under dry cut condition still faces challenges such as burr of titanium alloy hole exit and CFRP hole delamination. In order to solve these problems, an innovative helical milling tool with distributed multi-point front cutting edge is designed based on the chip-splitting mechanism and tool movement feature. The description of cutting edge movement track and simulation of chip shape is used to analyze different functions of front and peripheral cutting edges, the chip-splitting result and the specialized tool's service life. The helical milling experiments are aimed to test the performance of the specialized tool compared with that of traditional end mill. Results show that the specialized tool can machine titanium hole free of burr and CFRP hole without delamination under dry cut condition. The specialized tool has a longer service life with its machining capacity amounting to 80 titanium holes and 65 CFRP holes..

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.