Abstract

Based on the nanoporous network structure features of silica aerogel, the gas-solid coupled heat transfer model of silica aerogel is analyzed, and the calculation formulas of the gas-solid coupled, the gas thermal conductivity and the heat radiation within the aerogel are derived. The thermal conductivity of pure silica aerogel is calculated according to the derived heat transfer model and is also experimentally measured. Moreover, measurements on the thermal conductivities of silica aerogel composites with different densities at ambient conditions are performed. And finally, a novel design of silica aerogel based integrated structure and thermal insulation used for withstanding the harsh thermal environment on the Martin surface is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call