Abstract

In this paper, the characteristics of forced convection heat transfer in water-based nanofluids are studied by means of experimental and theoretical analysis. Nusselt number of nanofluids were calculated by changing the volume fraction and the type of nanoparticles in the tube. The effects of Reynolds number and the volume fraction of nanoparticles on the forced convection heat transfer were studied. An exergy analytical model was established for the laminar heat transfer of nanofluid under the condition of constant heat flow. At the same Reynolds condition, the friction entropy production of the flow and heat transfer process in the tube increases with the addition of nanoparticles, and the heat transfer entropy production decreases at the same time. However, the magnitude of friction entropy production is only 10?6, which is negligible compared with the heat transfer entropy production. Therefore, in general, the loss of nanofluids is lower than that of pure water and for nanofluids, the exergy loss of hybrid nanofluid is lower than that of single nanofluid at the same volume fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.