Abstract

In the functioning of the hand–eye collaboration of an apple picking robot, the accuracy of the hand–eye relationship is a key factor affecting the efficiency and accuracy of the robot’s operation. In order to enhance the low accuracy of traditional hand–eye calibration methods, linear and nonlinear solving methods based on mathematical tools such as quaternions are commonly adopted. To solve the loss of accuracy in decoupling during the linearization solution and to reduce the cumulative error that occurs during nonlinear solutions, a hand–eye calibration method, based on the ICP algorithm, is proposed in this paper. The method initializes the ICP matching algorithm with a solution derived from Tsai–Lenz, and substitutes it for iterative computation, thereby ascertaining a precise hand–eye conversion relationship by optimizing the error threshold and iteration count in the ICP matching process. Experimental results demonstrate that the ICP-based hand–eye calibration optimization algorithm not only circumvents the issues pertaining to accuracy loss and significant errors during solving, but also enhances the rotation accuracy by 13.6% and the translation accuracy by 2.47% compared with the work presented by Tsai–Lenz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.