Abstract

This study focuses on the control strategy for a ground mobile robot (GMR) with independent three-axis six-wheel drive and four-wheel independent steering, performing double lane change trajectory tracking in complex scenarios. Initially, a dynamic model of the six-wheel independent drive and steering GMR was constructed. Utilizing Model Predictive Control (MPC) technology, the challenge of trajectory tracking at low speeds was effectively addressed. For high-speed conditions, by thoroughly analyzing the impact of the predictive time-domain, this study innovatively introduced an Adaptive Neuro-Fuzzy Inference System (ANFIS) to dynamically adjust the prediction horizon of the MPC. A novel trajectory tracking algorithm integrating MPC and ANFIS was developed, with the network structure being trained using backpropagation (BP) method and the least squares method. Compared to traditional MPC, this hybrid strategy significantly improves trajectory tracking accuracy and stability at high speeds, with computational efficiency increased by 48.65%. Additionally, the algorithm demonstrated excellent adaptability and control effectiveness in various rigorous tests, including different speed levels, complex steering paths, load changes, sudden obstacles, and variable terrain. A 70 km/h trajectory tracking experiment on a physical vehicle yielded a root mean square (RMS) error of 0.1904 m, verifying its superior tracking performance and practical reliability. This provides a pioneering solution for high-performance trajectory control of ground mobile robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.