Abstract

C/SiC composite material is the best choice for important parts such as the hot-end structure of aerospace vehicles. Research and optimization of the cutting force of ultrasonic vibration-assisted grinding are of great significance when it comes to revealing the machining mechanism of C/SiC composites and realizing low-damage and efficient machining. In this paper, the comparative experimental study of ultrasonic vibration-assisted grinding and common grinding of C/SiC composites is carried out; the variation laws of grinding force and grinding force ratio with different machining methods and process parameters are analyzed, and the empirical formulas of ultrasonic-assisted grinding are summarized. The research results show that ultrasonic vibration can soften C/SiC materials and sharpen the cutting to a certain extent through the action of high-frequency impact, greatly reduce the value of the grinding force, and improve the machinability of the material. Thus, ultrasonic-vibration-assisted grinding processing is an effective method to achieve high-efficiency and low-damage processing of C/SiC composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call