Abstract
To solve the global path planning problem of the ship in the static and dynamic environment, we propose an improved ant colony algorithm to plan the ship’s navigation path. We use the artificial potential field method to compute the force direction of the ship at the initial iteration stage. The attraction potential field function is modified to improve the iteration efficiency of the hybrid ant colony algorithm. We design the pseudo-random state transition rule and improve the convergence of the hybrid algorithm by strengthening the selection of good paths. When updating the pheromone, we consider the path’s length, safety, and smoothness to plan a safer navigation path. The simulation results show that the improved ant colony algorithm has a faster convergence speed than the original ant colony algorithm. The optimal solution quality is higher, which can realize global ship path planning in static and dynamic environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Open Journal of Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.