Abstract

The reliability of gearboxes is extremely important for the normal operation of mechanical equipment. This paper proposes an optimized long short-term memory (LSTM) neural network fault diagnosis method. Additionally, a feature extraction method is employed, utilizing variational mode decomposition (VMD) and permutation entropy (PE). Firstly, the gear vibration signal is subjected to feature decomposition using VMD. Secondly, PE is calculated as a feature quantity output. Next, it is input into the improved LSTM fault diagnosis model, and the LSTM parameters are iteratively optimized using the chameleon search algorithm (CSA). Finally, the output of the fault diagnosis results is obtained. The experimental results show that the accuracy of the method exceeds 97.8%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.