Abstract

Building Information Modeling (BIM) is a very effective technology for supporting lean construction. However, the current application of BIM during the construction phase does not incorporate all necessary elements of the construction site in a comprehensive manner. Additionally, the depiction of the construction process lacks the desired level of detail. These limitations impede the application of BIM-based lean construction. In this paper, we propose a full-element and multi-time-scale modeling approach to BIM during the construction phase. Our method first establishes a full-element model by reconstructing the main body of the building based on construction subdivision dimensions, construction technology, and management objectives. We then create a three-dimensional model that includes a process elements model of circulating materials, temporary facilities, construction machinery, and surrounding environmental elements. The integrated model of these elements provides a comprehensive representation of BIM at any static time point. Second, we conduct multi-time-scale simulations based on the full-element model. Our approach divides the entire time, local time, and special time points into three scales to simulate project progress, local structure construction technology, and working conditions. A case study of the Daxing International Airport construction project verifies that our method can achieve lean management of construction resources. Full-element modeling provides a comprehensive BIM representation at any static time point, thereby supporting lean construction by improving construction resource management, reducing costs, and enhancing efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call