Abstract

In this research, five groups of steel fiber reinforced cementitious composite (SFRCC) with different fiber volume content (0%, 0.5%, 1.0% 1.5%, and 2.0%) were designed to perform four-point flexural tests on beam specimens to study the effects of polar temperature (20, 0, −25, −50, −75, and −100°C) and fiber volume content on the flexural properties. The flexural toughness index and load holding capacity index were calculated based on the load–displacement curve, and the enhancement and toughening mechanisms of SFRCC by low temperature and steel fibers were analyzed in conjunction with experimental observations. The results of the proposed flexural toughness evaluation method show that the flexural toughness of SFRCC can significantly improve than that of ambient temperature when the temperature is lower than 0°C. With the decrease in temperature, the flexural property of SFRCC increases first and then decreases, and the temperature point of this transition is around −50–−75°C. The flexural property enhancement effect of 1.0% fiber volume content SFRCC is more significant in low temperatures according to the flexural toughness index and load holding capacity index. The conclusion can provide a reference for the application of SFRCC in cryogenic engineering, as well as a simple and quantifier evaluation method for flexural toughness is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call