Abstract
The supply chain of Agaricus bisporus constitutes a complex, multi-layered production and distribution network, encompassing various stages. Challenges in information transmission and process integration between these stages often lead to reduced query efficiency, subsequently compromising the credibility of traceability results and the flexibility of the system. In traditional traceability systems, data for multiple service recipients may be stored on a single blockchain, resulting in complex data structures and making it challenging for users to conduct effective queries and analyses. To address this issue, this paper proposes a solution: a multi-chain tracing model tailored for stakeholders in the traceability process of Agaricus bisporus. This model establishes public chains, enterprise chains, and supervision chains for consumers, enterprises, and regulatory authorities, respectively, to enhance system storage and query efficiency. Additionally, leveraging the modular design of Hyperledger Fabric, the paper optimizes and upgrades the supply chain of Agaricus bisporus. The proposed multi-chain tracing model, designed for traceability for stakeholders, undergoes rigorous validation. Analysis and application results demonstrate that this approach significantly improves the query efficiency and credibility of traceability information while markedly enhancing system flexibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.