Abstract

The rapid, stable, and undamaged picking of small-sized spherical fruits are one of the key technologies to improve the level of intelligent picking robots and reduce grading operations. Cherry tomatoes were selected as the research object in this work. Picking strategies of two-stage “Holding-Rotating” and finger-end grasping were determined. The end-effector was designed to separate the fruit from the stalk based on the linear motion of the constraint part and the rotating gripper. This work first studied the human hand-grasping of cherry tomatoes and designed the fingers with sinusoidal characteristics. The mathematical model of a single finger of the gripper was established. The structural parameters of the gripper were determined to meet the requirements of the grabbing range from 0 to 61.6 mm. Based on the simulation model, the constraint part was set to 6 speeds, and the fruit sizes were set to 20 mm, 30 mm, and 40 mm, respectively. When the speed was 0.08m/s, the results showed that the grabbing time was 0.5381 s, 0.387 s, and 0.2761 s, respectively, and the maximum grabbing force was 0.9717 N, 3.5077 N, and 4.0003 N now of clamping, respectively. It met the picking requirements of high speed and low loss. The criterions of two-index stability and undamaged were proposed, including the grasping index of the fixed value and the slip detection of variance to mean ratio. Therefore, the control strategy and algorithm based on two-stage and two-index for rapid, stable, and non-destructive harvesting of small fruit were proposed. The results of the picking experiment for seventy-two cherry tomatoes showed that the picking success rate was 95.82%, the average picking time was 4.86 s, the picking damage rate was 2.90%, the browning rate was 2.90% in 72 h, and the wrinkling rate was 1.49% in 72 h, which can meet the actual small spherical fruit picking requirements. The research will provide an idea for the flexible end-effectors with humanoid grasp function and provides a theoretical reference for small spherical fruit picking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call