Abstract
To clarify the reasons for inaccurate fire detection in aircraft cargo holds, this article depicts research from the perspective of a single type of sensor detection. In terms of fire smoke, we select dual-wavelength photoelectric smoke sensors for fire-data collection and a genetic algorithm to optimize the classification and detection of random forest fires. From the perspective of fire CO concentration, we use PSO-LSTM to train a CO concentration compensation model to reduce sensor measurement errors. Research is then conducted from the perspective of various types of sensor detection, using the improved BP-AdaBoost algorithm to train a fire-detection model and achieve the high-precision identification of complex environments and fire situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.