Abstract

In this paper, a system for absolute distance measurement is proposed based on laser frequency scanning interferometry (FSI). The system utilizes a digitally tunable laser as the light source and employs synchronized pulses to drive an analog-to-digital converter (ADC) for interference signal acquisition. The frequency domain demodulation for absolute distance measurement is achieved through a three-spectrum line interpolation method based on the Hanning window. The system takes advantage of the spatial filtering characteristics of a single-mode optical fiber and the diffuse reflection properties of light to achieve a high integration of the prism system that forms the interference optical path. The resulting integrated fiber-optic probe is capable of measuring the distance to a non-cooperative target even when oriented at a certain angle with the target. We designed and fabricated a portable prototype. Experimental validation demonstrated that the maximum measurement distance of the system is 73.51 mm with a standard deviation of less than 0.19 μm for optimal measurement results. Even when there is an offset angle, the system maintains good measurement repeatability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call