Abstract

To improve the reliability of coal mine safety monitoring systems we have analyzed the characteristics of a methane sensor, an important component of the monitoring system of production safety in a coal mine and studied the main type and mode of faults when the sensor was used on-line. We introduced a new method based on artificial neural network to detect faults of methane sensors. In addition, using the output information of a single methane sensor, we established a sensor output model of a dynamic non-linear neural network for on-line fault detection. Finally, the fault of the heating wire of the sensor was simulated, indicating that, when the methane sensor had a fault, the predicted output of the neural network clearly deviated from the actual output, exceeding the pre-set threshold and showing that a fault had occurred in the methane sensor. The result shows that the model has good convergence and stability, and is quite capable of meeting the requirements for on-line fault detection of methane sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.