Abstract

A method based on singular value decomposition (SVD) and fuzzy neural network (FNN) was proposed to extract and diagnose the fault features of diesel engine crankshaft bearings efficiently and accurately. Firstly, vibration signals of crankshaft bearings in known state under the same working condition were decomposed by EMD to obtain the modal components containing fault‐feature information. Then, the singular values of modal components which include the main fault features were used as the initial vector matrix, where the eigenvectors were decomposed to form a fault characteristic matrix. At last, the fault features matrix was trained by the fuzzy neural network, in order to realize the diagnosis and identification of the crankshaft bearings in different states in the form of numerical values. The experiment showed that the numerical identification of the fuzzy neural network based on the singular value had high fault diagnosis accuracy and stability. This method can also reflect the gradual change of the crankshaft bearings’ fault to some extent, so it has the desired reliability and value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.