Abstract

Prosthetic polymeric heart valves (PHVs) have the potential to overcome the inherent material and design limitations of traditional valves in the treatment of valvular heart disease; however, their durability remains limited. Optimal design of the valve structure is necessary to improve their durability. This study aimed to enhance the fatigue resistance of PHVs by improving the stress distribution. Iterative subregional thickening of the leaflets was used, and the mechanical stress distribution and hemodynamics of these polymeric tri-leaflet valves were characterized using a fluid-structure interaction approach. Subregional thickening led to a reduction in stress concentration on the leaflet, with the effective orifice area still meeting ISO 5840-3 and the regurgitant volume achieving a similar value to those in previous studies. The maximum stress in the final iteration was reduced by 28% compared with that of the prototype. The proposed method shows potential for analyzing the stress distribution and hemodynamic performance of subregional thickened valves and can further improve the durability of PHVs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.