Abstract

Driver fatigue represents a significant peril to global traffic safety, necessitating the advancement of potent fatigue monitoring methodologies to bolster road safety. This research introduces a conditional generative adversarial network with a classification head that integrates convolutional and attention mechanisms (CA-ACGAN) designed for the precise identification of fatigue driving states through the analysis of electroencephalography (EEG) signals. First, this study constructed a 4D feature data model capable of mirroring drivers' fatigue state, meticulously analyzing the EEG signals' frequency, spatial, and temporal dimensions. Following this, we present the CA-ACGAN framework, a novel integration of attention schemes, the bottleneck residual block, and the Transformer element. This integration was designed to refine the processing of EEG signals significantly. In utilizing a conditional generative adversarial network equipped with a classification header, the framework aims to distinguish fatigue states effectively. Moreover, it addresses the scarcity of authentic data through the generation of superior-quality synthetic data. Empirical outcomes illustrate that the CA-ACGAN model surpasses various extant methods in the fatigue detection endeavor on the SEED-VIG public dataset. Moreover, juxtaposed with leading-edge GAN models, our model exhibits an efficacy in in producing high-quality data that is clearly superior. This investigation confirms the CA-ACGAN model's utility in fatigue driving identification and suggests fresh perspectives for deep learning applications in time series data generation and processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.