Abstract
Aiming at the problem that face images are easily interfered by occlusion factors in uncontrollable environments, and the complex structure of traditional convolutional neural networks leads to low expression recognition rates, slow network convergence speed, and long network training time, an improved lightweight convolutional neural network is proposed for facial expression recognition algorithm. First, the dilation convolution is introduced into the shortcut connection of the inverted residual structure in the MobileNetV3 network to expand the receptive field of the convolution kernel and reduce the loss of expression features. Then, the channel attention mechanism SENet in the network is replaced by the two-dimensional (channel and spatial) attention mechanism SimAM introduced without parameters to reduce the network parameters. Finally, in the normalization operation, the Batch Normalization of the backbone network is replaced with Group Normalization, which is stable at various batch sizes, to reduce errors caused by processing small batches of data. Experimental results on RaFD, FER2013, and FER2013Plus face expression data sets show that the network reduces the training times while maintaining network accuracy, improves network convergence speed, and has good convergence effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.