Abstract
The continuous development of smart cities has put forward higher requirements for the supply of power systems. In response to the constraints in the environmental performance and measurement of smart city power supply, this paper proposes a research model for smart city power supply environmental performance and measurement based on non-radial network DEA based on the characteristics of DEA model and distance function. This model can combine different stages of power supply to conduct more reasonable statistics and analysis of efficiency in different regions. In addition, correlation coefficients were analyzed for the impact of efficiency factors on the phase ratio in the production and sales stages of the power supply system. The research results indicate that there is a positive correlation between the output value and power generation of electricity sales and the efficiency of the electricity sales stage, with correlation coefficients of 0.57 and 0.092, respectively; The length of newly added lines, capacity of new equipment, and line loss rate are all negatively correlated with their efficiency, with correlation coefficients of −0.42, −0.12, and −0.46, respectively. Based on the above analysis, this study provides more theoretical support for the study of environmental performance and measurement of smart city power supply.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Distributed Generation & Alternative Energy Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.