Abstract

Abstract Photovoltaics have the advantages of being clean and renewable and have gained a wide range of applications. It is promising to use photovoltaic energy for the power supply of buildings, as the building sector accounts for a large portion of global energy consumption with a constantly increasing trend. However, photovoltaics are greatly affected by time and environment, and it is usually combined with batteries to form a photovoltaic–battery energy storage system to meet the load demand. This paper aims to analyze and compare energy management strategies of an on-grid solar photovoltaic–battery system for a real building project in a typical May and October region, but unlike other studies, the strategies used in this paper are very simple and easy to implement. It can also realize photovoltaic, battery and grid to meet the load power demand. Two strategies are used in this paper. Strategy 1 is to maximize the utilization of the energy generated by photovoltaics: while the energy generated by photovoltaics cannot meet the load demand, the battery will provide energy, and while the battery cannot meet the load demand, the grid will provide energy. The photovoltaic energy is given priority to the battery under the premise of meeting the load demand. Strategy 2 is to use the time-of-use electricity price, and the battery obtains cheap electricity at night to meet the load of the high electricity price the next day. The feasibility of the strategy used is demonstrated by actual data of buildings and photovoltaic–battery energy storage systems. This study can provide theoretical references for the energy management and system operation to facility managers and building occupants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call