Abstract

Information self-destruction devices represent the last protective net available to realize information security. The self-destruction device proposed here can generate GPa-level detonation waves through the explosion of energetic materials and these waves can cause irreversible damage to information storage chips. A self-destruction model consisting of three types of nichrome (Ni-Cr) bridge initiators with copper azide explosive elements was first established. The output energy of the self-destruction device and the electrical explosion delay time were obtained using an electrical explosion test system. The relationships between the different copper azide dosages and the assembly gap between the explosive and the target chip with the detonation wave pressure were obtained using LS-DYNA software. The detonation wave pressure can reach 3.4 GPa when the dosage is 0.4 mg and the assembly gap is 0.1 mm, and this pressure can cause damage to the target chip. The response time of the energetic micro self-destruction device was subsequently measured to be 23.65 μs using an optical probe. In summary, the micro-self-destruction device proposed in this paper offers advantages that include low structural size, fast self-destruction response times, and high energy-conversion ability, and it has strong application prospects in the information security protection field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.