Abstract

The purpose of this paper is based on micro fabrication technology, while integrating planar waveguide technology and the scattering phenomenon generated by electro-statically actuator thin film, to develop a 2-dimensional display technology capable of being cleared and re-displayed. For thin film displacement, the restoration of inward elasticity needs to be overcome. During thin film displacement, attraction due to suction occurs when coming into contact with light waveguide; electrostatic force and elastic force are restored and mutually balanced, causing display to light up. On the other hand, when input voltage is released, electrostatic force stops and thin film is restored to original position, causing display to darken. The design structure uses SU-8 as supporting posts, and PDMS as the electrostatic thin film suspended above the glass substrate (light waveguide). The experimental results show that a waveguide with an electrode length of 250 μm (sub-pixel length), a micro-post height of 27 μm, and a PDMS film thickness of 16 μm requires an actuator voltage of 314 V; and a micro-post height of 27 μm, and a PDMS film thickness of 8 μm requires an actuator voltage of 189 V. Thus, with an arrayed micro-electrode design, electronic paper and panels with large color display area could be manufactured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.