Abstract

Electrical conductive carbon black-filled cement-based composites are significant as multifunctional structural materials. Double percolation in carbon black-filled cement-based composites involves both carbon black particle percolation and cement paste percolation, which has great effect on the resistivity of composites. Based on double percolation theory, the influences of sand-binder ratio and carbon black volume fraction on the resistivity of carbon black-filled cement-based composites are investigated. The results show that besides carbon black volume fraction, sand-binder ratio is a key factor affecting double percolation behavior in carbon black-filled cement-based composites. At a fixed carbon black content in overall mortar, with increasing sand-binder ratio, the cement paste percolation though aggregate phase increases due to high obstruction of aggregate but the carbon black particle percolation in cement paste decreases. This is because that the microstructure of aggregate is impenetrable so that the carbon black particles are limited in cement paste, that is, the carbon black content in paste is compacted and large amount of conductive paths are generated by lapped adjacent carbon black particles in paste. The double percolation in the electrical conduction in carbon black-filled cement-based composites is observed when the carbon black volume fraction is 7.5% and sand-binder ratio is 1.4, and its resistivity is only 3200 Ωcm, so that a sand-binder ratio of 1.4 and 7.5% carbon black volume fraction or more are recommended for attaining high conductivity with a compromise between workability and conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call