Abstract

For the challenge of the data sparsity of user-behaviour in the current e-business personalised recommendation system, an information resource extraction method for e-business requirements based on similar case analysis is proposed in this paper. A recommendation model for e-commerce users' requirements information resources is built. the method based on similar case analysis is introduced into the personalised recommendation of e-business under the background of the personalised recommendation of e-business considering the potential requirement. The feature attribute similarity and comprehensive similarity of customer registration information are calculated. Combining user preferences, e-business resources from users' requirements in the case set are extracted. Experimental results show that the proposed method has good effect on product coverage, product exposure rate, and feedback rate. It can overcome the behaviour sparsity of user-product, and extract the dark information in e-business requirement information resources, and overcome the long tail recommendation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.