Abstract

In this study, the dynamic characteristic of a multi-sensor system made up of such sensors as are sensitive to several parameters is discussed, and the effect of cross-sensitivity on the precision of a measurement system is also discussed. A multi-sensor system is looked as a serial of a linear filter and a memoryless nonlinear system, i.e. Wiener system, and the subsequent information fusion system is regarded as a Hammerstein system, i.e. a serial of a memoryless nonlinear system and a linear filter. On the basis of static calibration, it is presented to determine the inverse filter in a Hammerstein system using blind deconvolution. In order to control the uncertainty of amplitude of signals recovered by blind deconvolution well, a regulation approach to regulating the inverse linear filter coefficient matrixes is presented according to the identity between inverse filter coefficient matrixes and static calibrating matrix. So the approximate inverse dynamic model of multi-sensor system is obtained, the degree of distortion of dynamic measurement result is reduced, the measurement precision is improved, and the need of practice can be reached. Simulation example and simulation result show that the recovered error of the inputs of sensor system, the frequency of which is 1/10 of sampling frequency, is 1/20 of the measurement results without dynamic compensation, and is one half of the measurement results with sole dynamic compensation, and the rapidity is improved 2 times. The dynamic compensation results of a metal oxide semiconductor methane sensor show that the dynamic measurement error is less than one half of that without dynamic compensation. So this method expands the bandwidth of multi-sensor system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call