Abstract
In order to study driver’s visual characteristics under different curvatures and turning conditions in extra-long urban underwater tunnels, fixation and saccade were herein regarded as the main research objectives. In this study, we carried out real vehicle testing on curved sections with 5 different radii and straight sections of the extra-long urban underwater tunnels. The driver’s fixation characteristics were studied by using fixation distribution, fixation time, fixation frequency, fixation time ratio, and frequency ratio. The driver’s saccade characteristics were investigated by selecting the saccade angle, saccade time, saccade frequency, saccade time ratio, and frequency ratio. Accordingly, mathematical models of the driver’s fixation time, fixation frequency, saccade time, and saccade frequency under different curvatures and turning conditions in the extra-long urban underwater tunnel were established. Combined with the change of visual distance, sight distance, and sight zone, driver’s visual characteristics in the extra-long urban underwater tunnel were further analyzed. The results demonstrated that the smaller the radius of the tunnel, the more focused driver’s fixation time, the greater the psychological pressure, and the lower the safety when driving. Under the same radius, driver’s tension and risk factors were higher during turning left, while driver’s driving mentality was more relaxed and driving situation was further stable in the right-turn.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.