Abstract
With off-axis reflection systems with specific distortion values serving as objectives or collimators, it is possible to compensate and correct for spectral line bending in spectroscopic instruments. However, there is limited research on the precise control of distortion, which poses particular challenges in large field-of-view optical systems. This paper presents a method for controlling distortion in off-axis reflection systems. Based on Seidel aberration theory and the relationship between distortion wavefront error and primary ray error, we construct objective functions with structural constraints and aberration constraints. The initial structure with specific distortion values is then solved using a differential evolution algorithm. The effectiveness and reliability of this method are verified through the design of an off-axis three-reflection system. The method provided in this study facilitates the design of remote sensing instruments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.