Abstract
The Mesozoic Chang 8 Section in the Zhenjing area is a typical low permeability-tight sand reservoir and is regarded as the most important set of paybeds in the study area. Guided by the principles of basic geological theory, the diagenetic evolution process and hydrocarbon accumulation periods of the Chang 8 reservoir in the study area were determined through various techniques. More specifically, core observation, scanning electron microscopy (SEM), X-ray diffraction (XRD), and vitrinite reflectance experiments were performed in combination with systematic studies on rock pyrolysis and the thermal evolutionary history of basins, the illite-dating method, and so on. The Chang 8 reservoir is dominated by feldspar lithic and lithic feldspar sandstones. Quartz, feldspar, and lithic fragments are the major clastic constituents. In clay minerals, the chlorite content is the highest, followed by illite/smectite formation and kaolinite, while the illite content is the lowest. The major diagenesis effect of the Chang 8 reservoir includes compaction, cementation, dissolution, metasomatism, and rupturing. The assumed diagenetic sequence is the following: mechanical composition → early sedimentation of chlorite clay mineral membrane → early cementation of sparry calcite → authigenic kaolinite precipitation → secondary production and amplification of quartz → dissolution of carbonate cement → dissolution of feldspar → late cementation of minerals such as ferrocalcite. Now, the study area is in Stage A in the middle diagenetic period. Through the inclusion of temperature measurements, in conjunction with illite dating and thermal evolutionary history analysis technology in basins, the Chang 8 reservoir of this study was determined as the phase-I continuous accumulation process and the reservoir formation epoch was 105~125 Ma, which was assigned to the Middle Early Cretaceous Epoch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.