Abstract

The space-based infrared LEO constellation has the ability of surveillance and tracking of ballistic missiles during entire phases, which has played an important role in the ballistic missile defense system (BMDS). This paper focuses on the scheduling strategy for the LEO constellation to multiple targets. The concept of average contribution of the satellite is firstly introduced, transforming the dynamic scheduling process to continuous intervals. The switching frequency and relaxation degree are also considered as decision variables. Then the multilayer coding genetic algorithm is improved in order to solve the scheduling problem. Finally, a scheduling demonstration validates the correctness and effectiveness of the presented method. The theory analysis and simulation results of this paper can provide powerful support for future design of the LEO constellation and research on the BMDS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.