Abstract
Image quality assessment (IQA) is an indispensable technique in computer vision, which is widely applied in image classification, image clustering. With the development of deep learning, deep neural network (DNN)-based methods have shown impressive performance. Thus, in this paper, we propose a novel method for mechanical equipment fault diagnosis based on IQA. More specifically, we first conduct data acquisition base on our practice. Afterwards, we leverage image processing method for removing noise. Subsequently, we leverage CNN-based method for image classification. Finally, different mechanical equipment images will be grouped into different categories and fault detection can be achieved. Extensive experiments demonstrate the effectiveness and robustness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.