Abstract

In the most of previous data reconciliation(DR) studies, process data were conventionally characterized by normal Gaussian distribution, so the optimality/validity of DR estimator is implicitly based on a main assumption that errors follow normal Gaussian distribution. When this assumption is not satisfied, conventional data reconciliation approaches will become unavailable. However, normal distribution usually does not exist in real chemical engineering practice, as it is hard to ensure the normality even for high-quality measurements. So it is necessary to propose a new DR method which can accommodate more variety of measurement error distribution. In this paper, generalized T distribution is applied to accommodate measurement error distribution, meanwhile, historical data is introduced to estimate the objective function parameters by using Particle Swarm Optimization (PSO) algorithm. A novel robust data reconciliation method is proposed based on GT distribution and historical data, at the same time, its robustness characteristics are investigated. The new method is demonstrated on a steam-metering system for a methanol synthesis unit. Based on the comparison with other DR methods, the novel robust DR method can effectively improve the reliability of reconciled data even when errors do not follow normal distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.