Abstract

For the low efficiency and poor surface quality problem of finishing ruled surface blade in the traditional method, tapered ball end mill cutter location optimization methods had been proposed to ensure that the envelope surface of tapered ball end mill is close to intractable ruled surface blade as much as possible. First, the tapered ball end mill initial cutter location was obtained based on the improved two point offset algorithm. Then to realize the cutter location optimization calculation, selected three point in tool axis to slide for the target of the minimum range between cutter envelope surface and blade surface. Finally, the blades instance was calculated according to the obtained tool center point and optimized tool axis vector. Simulation and experiments verified the effectiveness of cutter location optimization method proposed in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.