Abstract

Obtaining real time quantitative condition assessment results is a focus in the field of nuclear power system PHM. The existing researches on the nuclear power system condition assessment based on the Multi-Criteria Decision-Making framework do not consider the faults perniciousness differences. This leads to the assessment results relying on the system status deviation degrees(severity), and the weighting and aggregation processes cannot effectively reflect the differences in the consequences and risks of different faults, which represent the faults harmfulness. A quantitative assessment method based on fault severity and fault harmfulness is proposed to address this issue. The novel method quantifies the fault severity based on the similarity principle while diagnosing system faults, and then analyzes the devices mainly affected by various faults to quantifies the harmfulness. Combining the system status deviation degrees(severity), the devices and parameters importance, and the differences in faults harmfulness, the novel method aggregates comprehensive system condition assessment results. Based on a widely recognized nuclear power system faults dataset, the novel method was compared with other methods. The conclusion is that the novel method considers the differences in the faults harmfulness, resulting in more reasonable assessment results and avoiding insufficient or excessive warnings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.