Abstract

This paper proposed a novel effective quantitative analysis method for FTIR spectroscopy of polluted gases, which select the best wavenumbers based on the idea of interval dividing. Meanwhile, genetic algorithm was adopted to optimize the connect weights and thresholds of the input layer and the hidden layer of extreme learning machine (ELM) because of its global search ability. Firstly, the whole spectrum region was divided into several subintervals; Secondly, the quantitative analysis model was established in each subinterval by using optimized GA-ELM; Thirdly, the best combination of subintervals was selected according to the generalized performance of each subinterval model by computing the parameters root mean square error (RMSE) and determined coefficients r. In this paper, the mixture of CO, CO2 and N2 O gases were selected as the research object and the whole spectrum range was from 2 140 to 2 220 cm-1. The experiment results showed that the RMSE of model established with the selected wavenumbers was 154. 996 3, the corresponding r can reach 0. 987 4, and the running time was just 0. 8 seconds, which indicated that the concentration retrieval model established with the proposed Interval-GA-ELM (iGELM) method can not only reduce the modeling time, but also can improve the stability and predict accuracy, especially under the condition of the exist of interferents, which providing an effective approach to the remote analysis of polluted gases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.