Abstract
In the process of disease identification, as the number of diseases increases, the collection of both diseases and symptoms becomes larger. However, existing computer-aided diagnosis systems do not completely solve the dimensional disaster caused by the increasing data set. To address the above problems, we propose methods of using symptom filtering and a weighted network with the goal of deeper processing of the collected symptom information. Symptom filtering is similar to a filter in signal transmission, which can filter the collected symptom information, further reduce the dimensional space of the system, and make the important symptoms more prominent. The weighted network, on the other hand, mines deeper disease information by modeling the channels of symptom information, amplifying important information, and suppressing unimportant information. Compared with existing hierarchical reinforcement learning models, the feature extraction methods proposed in this paper can help existing models improve their accuracy by more than 10%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.