Abstract

The flow stress behavior of the 7075-T6 aluminum alloy was studied through single-pass compression experiment by using MMS-300 simulator within temperature range of 300-450°C and strain rate range of 0.01-40s-1. Then a simulation of compression was carried out and the influence of deformation velocity on load and deformation heating was investigated according to the relationship between stress and strain. The results show that dynamic recrystallization occurs in hot compression of 7075-T6 alloy and the stress-strain curves are presented as wave. Furthermore, the flow stress curves have the same wave period and the fluctuation range increases with an increase of strain rate and a decrease of strain. Increasing of deformation velocity results in higher critical strain but the value decreases when the deformation velocity is much higher. The temperature rise increases with the increase of deformation velocity and decrease of deformation temperature. The maximum of temperature rise is more than about 30°C, so that the deformation heating is significant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call