Abstract

Owing to the large amount of waste glass generated, the waste glass recycling base is an indispensable municipal supporting facility of a sustainable city. However, waste glass recycling is a complex process involving stages such as multiple-stage crushing and material sorting. Consequently, waste glass recycling base has a considerable impact on the surrounding environment, such as health risk of particulate matter on workers. In this study, we aimed to perform a comprehensive investigation and analysis of compound pollution characteristics and health risk evaluation of particulate matter and heavy metals generated from waste glass recycling process. Soil, particulate fallout, and glass samples were collected from inside and outside a recycling plant in eastern China. Our findings showed that the waste glass treatment process produces a large amount of air particulate matter, and the PM2.5 and PM10 concentrations can reach 3725 and 4055 μg/m3, respectively, in the production workshop during working hours. Meanwhile, the monitoring results show that the concentration of heavy metals on fine particles is higher compared to coarse particles. The high Zn and Pb concentrations detected in the soil and dustfall were proved to be derived from the glass raw materials. However, health risk assessment and particle deposition modeling in the human respiratory system revealed that heavy metals from the air particulate matter have no significant carcinogenicity or non-carcinogenic risk. The Gaussian dispersion model showed that the impact of particulate matter on the surrounding environment and health of the surrounding residents is minimal. Furthermore, transportation is the major emission link according to the particulate emission calculation, indicating that it is imperative to upgrade and reform the existing processes of waste glass recycling. Taken together, this study provides a scientific basis for the green development of waste glass recycling process and further environmental information regarding waste glass recycling plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call