Abstract
The collision mechanisms of spar platform haven’t caused so much attention as that of ships in the past, for the short of this kind of collision accidents reported. But this does not mean the impossibility of the collision accident in the future. The research on external mechanism and internal mechanism for a ship colliding with a spar platform is introduced in this paper. A model test is designed to study the external mechanism. The collision scenario is described as a ship colliding with a spar platform moored in 1500 meters water depth. The specifics of the spar’s motions and the tension forces of the mooring lines are gathered, to find the hydrodynamic characteristics in the collision scenario. It is found that the maximal displacements and the maximal pitch angles of the spar platform, and the maximal tension forces of mooring lines are all linearly proportional to the initial velocity of the striking ship basically. Mooring lines play elastic roles in the collision course. The internal mechanism of the ship colliding with the spar platform is achieved by numerical simulation method and the software used is MSC.DYTRAN. A Truss-Spar is taken as the object and a double hull structural design is adopted in the part of hard tank near water surface. The curves of collision characters and the structural damage are obtained. The crashworthiness of the double hull design is verified, through the numerical simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.