Abstract
In the Internet age, how to dig out useful information from massive data has become a research hotspot. The emergence of recommendation algorithms effectively solves the problem of information overload, but traditional recommendation algorithms face problems such as data sparseness, cold start, and low accuracy. Later social recommendation algorithms usually only use a single social trust information for recommendation, and the integration of multiple trust relationships lacks an efficient model, which greatly affects the accuracy and reliability of recommendation. This paper proposes a trust-based approach. Recommended algorithm. First, use social trust data to calculate user trust relationships, including user local trust and user global trust. Further based on the scoring data, an implicit trust relationship is calculated, called rating trust, which includes scoring local trust and scoring global trust. Then set the recommendation weight, build the preference relationship between users through user trust and rating trust, and form a comprehensive trust relationship. The trust relationship of social networks is integrated into the probability matrix decomposition model to form an efficient and unified trusted recommendation model TR-PMF. This algorithm is compared with related algorithms on the Ciao and FilmTrust datasets, and the results prove that our method is competitive with other recommendation algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.