Abstract
The detection of CO2 based on coherent different absorption LiDAR (CDIAL) requires high signal-to-noise ratio (SNR). To improve the SNR and reduce the inversion error of CO2, a coherent differential absorption LiDAR based on Golay coding is proposed and the corresponding decoding method is also studied. The coding gain of SNR in traditional atmospheric backscattering signal detection is also analyzed when the pulse code technology is used. The variations of coding gain with the power of local oscillator (LO), the code length and the splitting ratio of 3 dB coupler are discussed. The higher the local oscillator power is and the more the beam splitting ratio deviates from 50%, the lower the coding gains. In addition, there are optimal code lengths in practical systems. The influence of thermal noise on the detection system decreases when the LO power grows, and there is optimal LO power which is only related to the system noise characteristics. The optimal LO power decreases with respect to single pulse detection after pulse coding, but the SNR is still higher than the traditional single pulse detection. When the splitting ratio of the 3 dB coupler is 0.495, the optimal LO power in coded system is 0.93 mW. The effective detection ranges of CO2 increase when the pulses are coded, and in the pulse accumulations of 104~1010, the improvement ratios of effective detection range are higher than 15%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.