Abstract

This paper aims to introduce robot technology to carry out the safety inspection of transmission towers in long-distance power transmission, so as to improve the safety and efficiency of inspection. However, aiming at the problem that the existing climbing robots are mainly used for large load applications, which leads to the large size and lack of flexibility of the robot, we propose an innovative solution. Firstly, a lightweight quadruped climbing robot is designed to improve portability and operational flexibility. Then, a one-dimensional force sensor is added at the end of each leg of the robot, and a special swing phase trajectory is designed. The robot can judge whether the electromagnetic adsorption is effective and avoid potential safety hazards. Finally, based on the principle of virtual model control (VMC), a foot-end force balancing algorithm is proposed to achieve uniform distribution and continuous change in force, and improve safety and load capacity. The experiments show that the scheme has a stable climbing ability in the environments of angle steel, vertical ferromagnetic plane and transmission tower.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.