Abstract

In order to overcome the inaccuracy of the current research results of online classroom question-answering classification, a method of online classroom question-answering classification based on natural language processing technology is proposed. The entity relationship model of the network classroom question answering system is constructed, and the model is transformed into the relational data model, the network classroom question answering database is constructed. TF-IDF technology is used to extract curriculum keywords, construct attribute word set, use natural language processing technology to segment students' questions reasonably in the network classroom, convert the words into vectors, calculate the question similarity according to cosine theorem, and then return the answers with the highest degree of similarity to students in the same type of questions. Experimental results show that the classification accuracy of the proposed method is always above 96%, and the user satisfaction is above 94%, with high classification accuracy and user satisfaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.