Abstract

The dual carbon targets and environmental quality constraints have released a clear transition signal for the green and low-carbon development of the cement industry. This study builds a CDI model based on the terminal sector forecasting method, predicts the cement demand in Shandong Province from 2020 to 2035, constructs a CO2 emission scenario in combination with green and low-carbon technical measures, uses the life-cycle assessment method to systematically simulate the CO2 emission trend of the cement industry in Shandong Province from 2020 to 2035, and discusses the low-carbon development path of the cement industry. The research shows that the overall demand for cement in Shandong Province shows a downward trend. Under the HD scenario, the cement demand has reached a historical peak of 166 Mt in 2021, and the per capita cement consumption is 1.63 t. In terms of CO2 emission structure, industrial production process CO2 accounts for 50.89–54.32%, fuel combustion CO2 accounts for 25.12–27.76%, transportation CO2 accounts for 10.65–11.36%, and electricity CO2 accounts for 9.20–10.71%. Through deepening supply-side structural reforms and implementing green and low-carbon technologies, the CO2 emissions and carbon intensity of the cement industry in Shandong Province will be significantly reduced. Under the EL scenario, CO2 emissions will be reduced from 92.96 Mt in 2020 to 56.31 Mt in 2035, the carbon intensity will be reduced from 581.32 kg/tc in 2020 to 552.32 kg/tc in 2035. In the short term, the decarbonization path of the cement industry in Shandong Province is mainly based on improving energy efficiency and comprehensive utilization of resources and energy technologies. In the long term, alternative raw materials and fuels are of great significance to improving the green and low-carbon development level of the cement industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.