Abstract

On June 28, 2010, a catastrophic rock avalanche occurred after an extreme rainstorm at Guanling with N 25°59′10′′ in latitude and E 105°16′50′′ in longitude, Guizhou, China. This rock avalanche has a long run-out distance of 1.5 km, with 1.75 million cubic meters of debris instantly burying two villages and resulting in 99 deaths. It originated in the coal measure strata, with the upper part of limestone and dolomite, the middle part of the sandstone with gentle inclination, and the lower part of shale and mudstone, together locally with coals. This kind of unique structure, with hard resistant caprock overlying softer ductile rocks, coupled with the central outflow region at the contact zone, has catastrophic potential for rock avalanches and creates challenges for engineering geological/hydrogeological analysis. The topography showed that the hillside slopes were steeper at the upper portion but gentler in the lower portion, looked like the shape of a “boot.” The upper steep landform easily led to slope instability due to its high static shear stresses, and the wide middle and lower parts provided kinematic conditions for long run-out. Transformation of the larger potential energy into kinetic energy contributed to the formation of a rapid long run-out rock avalanche. The rainfall from June 27 to 28 was the apparent trigger of this catastrophic avalanche. The measured rainfall of more than 310 mm within 24 h exceeded the local historical records that were recorded over the last 60 years. The pore pressure on discontinuities of sandstone had an effect on the slope stability. The valley runoff supplied a saturated base for the long run-out debris, inducing an additional increase of the terminus distance and the increased velocity of the avalanche movement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.