Abstract
Brownian thermal noise (TN) of ultra-stable cavities (USCs) imposes a fundamental limitation on the frequency stability of ultra-narrow linewidth lasers. This work investigates the TN in cylindrical USCs with the four support pads in detail through theoretical estimation and simulation. To evaluate the performance of state-of-the-art ultra-narrow linewidth lasers, we derive an expression of the TN for a cylindrical spacer according to the fluctuation–dissipation theorem, which takes into account the front face area of the spacer. This estimation is more suitable for the TN of the cylindrical USC than the previous one. Meanwhile, we perform detailed studies of the influence of the four support pads on the TN in cylindrical USCs for the first time by numerical simulations. For a 400 mm long cylindrical USC with an ultra-low expansion spacer and fused silica substrates, the displacement noise contributed from the four support pads is roughly four times that of the substrates and the GaAs/AlGaAs crystalline coating. The results show that the four support pads are the primary TN contributors under some materials and geometries of USCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.