Abstract

In this paper, a theoretical mechanical model for the brake shoe is set up according to the foundation brake unit of railway freight cars, and it indicates that the friction moment is the origin resulting in brake shoe eccentric wear. On this basis, the pressure distribution formula on the brake shoe is derived when the train brakes in forward and backward direction respectively. The analysis results show that if the wheel and the brake shoe are concentric, the ratio of the revolving-in end pressure to the revolving-out end pressure in wheel forward revolving is larger than that in wheel backward revolving. It is consistent with the phenomena that upper eccentric wear often appears on the brake shoe in practice. Further research reveals that the degree of the eccentric wear is determined by the braking force action style, which is the theoretical basis for the design revision. In addition, the RecurDyn Multi-body Dynamics software is used to build the rigid-flexible coupling dynamics model for the foundation brake unit. The simulation experiment verified the analysis result. The research outcome provides the theoretical basis and technical support for further design improvement of the foundation brake unit in railway freight cars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call